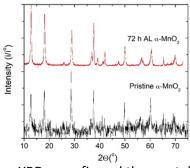
MSE-9: Anion Charge Storage System Hsin Lu, Yepeng Qin

Problem Statement:


How is the structure changed by varying the oxygen vacancy content using acid-leaching (AL) method affecting the electrochemical performance of α -MnO₂?

Approach:

Correlated structure & electrochemical performance with fabrication method:

- Manipulated the oxygen vacancy content of pristine α -MnO $_2$ by using an acid-leach method and drop-cast the materials onto electrodes.
- Characterized the samples via XRD, SEM, cyclic voltammetry.
- Compared electrochemical results of the electrodes. Capacitance was found to vary with different oxygen vacancy contents.

Results:

-Pristine α-MnO₂

—Acid Leached α-MnO₂

- XRD confirmed the crystal structure of α -MnO₂ not changing before and after acid-leaching.
- SEM showed different morphologies of both pristine and AL α -MnO₂.
- Cyclic Voltammetry showed pristine α -MnO₂ having capacitance of 464 F/g and AL α -MnO₂ having capacitance of 782 F/g.

Discussion & Conclusions:

- Acid-leaching method removed some oxygen content from pristine α -MnO₂ and created oxygen vacancies while the crystal structure of the material did not change.
- The morphology of the pristine α -MnO $_2$ changed from nanowires to an amorphous structure after the acid-leaching process.
- Cyclic voltammetry curves showed the AL α -MnO₂ having a higher capacitance of 782 F/g, which indicated that the material with a higher oxygen vacancy had a better electrochemical performance.

Contact:

Dr. Ekaterina Pomerantseva

Anne Stevens Assistant Professor, Materials Science & Engineering *E-mail:* ep423@drexel.edu

Phone: 215-571-4612

Dr. Steven May

Associate Professor and Graduate Advisor,

Materials Science & Engineering

E-mail: sjm95@drexel.edu

Phone: 215-571-3650

